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SUMMARY

Chemical kinetics of atmospheric pressure silicon carbide CVD from dilute silane and propane source

gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofila-
ments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of

carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species

concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolu-

tion of major gas phase species are considered in the analysis.

INTRODUCTION

High temperature properties of SiC make it a very attractive fiber and/or coating material for the aero-

space industry. Combined with the versatility of the CVD technique for fabricating materials, developing

models for SiC CVD is receiving increased attention to optimize and scale-up the process.

Earlier predictions of SiC deposit chemical composition based on thermochemical equilibrium approaches

proved to be quite inadequate when compared to experimental measurements (refs. 1 and 2), suggesting

the importance of chemical kinetic constraints. Indeed, it has been demonstrated that the reactive stick-

ing coefficients of gas phase species such as CH4, C2H2, C2H4, Sill4, Sill 2, and Si2H6, expected to be present

in SiC deposition, can span five orders of magnitude (refs. 3 to 5). However, more recent models proposed

so far, including detailed gas and surface chemistry, predict only SiC deposition rates, not deposit compo-
sition, as a function of reactor parameters (refs. 6 to 8), i.e., the deposit is prescribed to have a silicon to

carbon atom ratio of unity such that any nonstoichiometric SiC deposition is disallowed. Hence, these

models provide only limited guidance for controlling the silicon to carbon atom ratio in the deposit.

Recent experiments of Komiyama and coworkers (refs. 9 and 10) propose the possibility of the impor-
tance of organosilicon species for SiC CVD. They provide a plausible explanation of the composition change

of SiC x (x = 1 - 2) due to the presence of organosilicon species in the system (ref. 11). Indeed, the most
recent and detailed equilibrium analyses suggest that the role of organosilicon compounds may be quite

significant for SiC CVD (refs. 12 and 13). However, due to the lack of kinetic information to incorporate
such organosilicon species into our model, this study is limited to a reduced mechanism (ref. 7).

Based on the calculated concentration profiles of individual Si and C species within the reactor the

model predicts the surface fluxes of each species along the fiber surface. Deposit composition is inferred
from the total elemental fluxes of Si and C. The resulting concentrations of each species along the fiber

surface is also determined. Using these concentrations and the fiber surface temperatures, another approach

is taken to calculate the composition of the deposit that would prevail if there were local thermochemical

equilibrium at the fiber surface, i.e., no surface chemical kinetic barriersl Specific problems associated
with CVD on thin fibrous substrates are extensively discussed in our earlier publications (refs. 14 and 15)

and will not be elaborated on in this paper.



MODELING APPROACH

A finite-volumebased computational code FLUENT 3.03 is adopted for the simultaneous treatment of

gas phase transport processes and finite rate chemical kinetics (ref. 16). The CVD capabilities of this ver-

sion of FLUENT such as the temperature dependent thermophyslcal and transport properties, Sorer dif-

fusion, and gas and surface chemical reactions are fully exploited. The model is applied to an experimental

reactor which is a vertically oriented cylindrical tube as is schematically shown in figure 1. The details of

the numerical simulation and experimental setup are described in references 14 and 15.

The model uses the experimentally measured fiber and reactor wall temperature profiles given in table I

for the two fiber temperatures considered, namely, "1150 °C_ and "1450 °C_. The dilute source gas pre-

cursors are Sill 4 and C3H s in a H2 carrier gas. Throughout this analysis the total gas flowrate and inlet

Sill 4 mole fraction are fixed at 1 slm and 0.3 percent, respectively. The inlet C3H s mole fraction is either
the lower value of 0.3 percent for the "1150 °C _ case (hereafter referred to as the L/L case) or the higher

value of 0.9 percent for the u1450 °C_ case (hereafter referred to as the H/H case).

The kinetic model employed in this study assumes that Si and C deposition proceed independently from

one another with no interaction (i.e., no organosilicon compounds). The gas phase and surface reactions
are given below.

(G1)

(G2)
(G3)

(G4)

(C5)
(G6)

Gas phase

Sill 4 ¢_ Sill 2 + H2
Si2H 6 ¢_ Sill 2 + Sill 4

C3H s ¢_ CH 3 + CzH s

C2H s _ C2H 4 + H

C2H 4 ¢_ C2H 2 + H2

CH 3 ÷ H2 ¢_ CH 4 + H

($1)

(s2)
(s3)
(s4)
(ss)
(s6)
(s7)
(ss)
(sg)

Surface

Sill 4 --* Si(s) + 2H 2

SigH 6 --* 2Si(s) + 3H 2

Sill 2 --* Si(s) + H z

C3H s --* 3C(s) + 4H 2
C2H s --* 2C(s) + 2.5H 2

C2H 4 -* 2C(s) + 2H 2

CzH 2 _ 2C(s) + H z

CH 4 _ C(s) + 2H z

CH 3 ---, C(s) + 1.5H 2

Note that the gas phase reactionsgivenabove are consideredreversiblereactions,i.e.,the actualnumber

of gas phase reactionsincludedin the model isin fact12. The NIST Chemical KineticsData Base (ref.17)

isutilizedforselectingthe properreactionrates.For reversiblereactions(G1) and (G2) the rateexpres-

sionsare taken from reference18.The data of Warnatz (ref.19) isused forreversiblereactions(G3), (G4),

and (G6). The kineticsforthe reversiblereaction(G5) are obtained from reference20. Note alsothatall

surfacereactionsare consideredto be irreversible.Reaction ratesfor ($1),($2),and ($3)are the same as

in reference18,for ($4),($6),and ($8)are taken from the measurements ofreference5,and for ($5),

($7),and ($9)are the same as the estimatedValuesof reference7.Nine differentspeciesare consideredin

the transport/kineticcalculations.

For thermochemical equilibriumcalculationsthe NASA CEC computer program based on free-energy

minimization (ref.21) isused.Equilibriumgas phase compositionsare calculatedforcaseswhere (I) con-

densed phasesare not allowed,correspondingto a situationwhere the surfaceisfarfrom equilibriumand

depositionreactionsare much slowerthan gas phase reactionsand (2)conden_d phas_ are allowed to be

in equilibriumwith the gas phase,which enablesthe predictionofdepositcomposition under conditions

locallyprevailingat the surface.



RESULTS AND DISCUSSION

Before any kinetic considerations, the NASA CEC program is used for evaluating the major chemical

species which are likely to be present in the system at equilibrium at the inlet conditions. Two subcases

are analyzed for each of the L/L and H/H cases: (1) it is assumed that the surface kinetic barriers are

too high for solid phases to form and (2) the surface reactions are also assumed to be fast enough for

equilibrium to be established at the gas/solid interface. Table II lists the mole fractions of the first seven

C and Si species expected to be present in the gas phase for each case.

It is interesting to note that the condensed phases are C-rich in both L/L and H/H cases, with SiC

constituting 58 percent of the deposit for the L/L case and only 18 percent of the deposit for the H/H

case. The remainder in each case is graphitic C. For the L/L case, CH 4 seems to dominate over other

carbon species such as C2H2, C2H4, and CH3, whereas Sill 4 is the most abundant among the silicon

species. However, Si2C and Si 3 appear to be as important as Sill 4 and Sill 2 when solid phases are not
allowed, indicating the propensity of the system to form organosilicon compounds and for gas phase

nucleation. SiHx's are favored when interface equilibrium is allowed. For the H/H case, C2H 2 becomes

significant compared to CH4, SIH 2 becomes more stable than Sill4, and, when solid phases are not

allowed, the system favors to form the organosilicon Si2C with little indication of the tendency for gas
phase nucleation.

The transport/kinetic analysis can shed some light on how far our specific system is from equilibrium
both in the gas phase and at the interface and its consequences on the chemical composition of the deposit.

Figures 2(a) and (b) show the mole fractions of the species considered at and along the gas/fiber interface

for the L/L case. Sill 4 and C3H s dominate the gas composition with practically no depletion during the
Nl-sec residence time of the gases in the reactor. However, deposition fluxes are related to the product of

concentration and reactive (surface) sticking coefficient of the molecule. Hence, the differences in the sur-

face reactivities of the species lead to a different ranking of the contributions of species on deposition rates

as shown in figures 2(c) and (d), i.e., Sill 2 becomes more important than Sill 4 for silicon deposition, and

CH 3 and C2H 4 deliver more carbon to the surface than C3H 8. Indeed, the deposition rate profiles will fol-
low the combined surface flux profiles of the most significant contributors. Figure 2(e) shows the ratio of
the total elemental silicon flux to the total elemental carbon flux along the fiber surface and is an indica-

tion of the deposit chemical composition. Contrary to the equilibrium analysis, the transport/kinetic
analysis indicate a highly silicon-rich deposit.

A third approach is taken to determine the composition of the deposit along the fiber surface. It assumes

that the interface reaches equilibrium for the local temperature and element compositions calculated at

the fiber surface by the transport/kinetic model. This surface equilibrium approach is not incorporated

into the transport/kinetic analysis consistently, because the downstream elemental compositions at the
interface are obtained by using surface kinetics, rather than by using the upstream surface equilibrium

conditions. Yet, it provides a quick guidance for showing the propensity of the interface at equilibrium to

favor a particular deposit composition. Figure 2(f), obtained by this approach, displays that the deposit is
pure stoichiometric SiC along the fiber.

Figures 3(a) to (f) refer to the H/H case. The major differences from the L/L case (figs. 2(a) to (f))

are noted as follows: There is substantial silane depletion due to higher Sill 4 dissociation (fig. 3(a)), and,

therefore, Si deposition rates (fig. 3(c)). C2H 4 and CH 4 mole fractions are now even larger than C3H8,

indicating a faster approach towards equilibrium at higher temperatures (fig. 3(b)). Carbon deposition is

dominated by CH 3 and C2H4, and C3H s has the smallest surface flux (fig. 3(d)). From the transport/
kinetic analysis the deposit is expected to be more stoichiometric because elemental Si and C surface

fluxes are more comparable (fig. 3(e)). However, the post transport/kinetic analysis surface equilibrium

calculations result in a substantially C-rlch deposit (fig. 3(f)).



SUMMARYAND CONCLUSIONS

Different approaches are taken to assess the feasibility of predicting the deposit composition on mono
filaments in a reactor built for SiC CVD using silane and propane precursors. One approach assumed thermo

chemical equilibrium in the gas phase at inlet gas composition and fiber temperature while the gas/solid

interface is either assumed to be at equilibrium or is not allowed to form a condensed phase. Another

parallel approach incorporated the gas phase and surface chemical kinetics into a transport model. Based
on the evolution of the chemical species in the transport/kinetic analysis, the gas phase is found to be far

from equilibrium under practical operating conditions even at higher temperatures. On the other hand,

the equilibrium analysis indicated that the transport/kinetic analysis needs to consider organ.silicon

species and allow for mechanisms for the formation of embryonic nuclei leading to gas phase nucleation.

Yet a third approach based on equilibrium is used in series with the transport/kinetic model. This
method used the elemental compositions along the interface calculated by the transport/kinetic model for

the subsequent equilibrium predictions of the deposit composition.

The endeavor to predict the chemical composition of deposits grown by CVD is not a trivial task. The

attempted predictions of Si/C compositions from different approaches in this study, varying from silicon-
rich to stoichiometric to carbon-rich, indicate the need for more sophisticated surface reaction models which

are consistent with the thermochemical equilibrium extremes, and consideration of more sophisticated gas

phase chemical mechanisms and species as hinted by the gas phase equilibrium analyses, which are both

thus far neglected.
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Figure 1.--Sche_ of experimental reactor.

TABLE I.--EXPERIMENTALLY MEASURED

FIBER AND WALL TEMPERATURES

Distance

along
fiber,

cm

=1150 *C case"

Wall

temper-
litllire I

°C

Fiber

temper-
_ure I

"C

1096
1118
1129
1133
1142
1147
1149
1152

1 179
2 222
3 254
4 259
5 281

10 304
15 300
20 297

%450 "C cue"

Fiber W£1

temper- temper-
ature, ature,

"C "C

1421 246
1434 294
1442 328
1448 328
1450 354
1452 379
1449 378
1447 374

TABLE II.--EQUiLIB_UM _vIOLE FRACTIONS OF GAS PHASE SPECIES AND SOLID PHASES

FOR THE L/L AND H/H CASES

L/L.s L/L.b" H/H.a H/H.b"

Specimen Mole Specimen Mole Specimen Mole Specimen Mole
name fraction name fraction name fraction name fraction

CH,

CiH2

ClHl

CH s

ClHe

CIHs

CsHi

Hi
H

SLH,

SiH i

Sill

Silt s
Si

SiC i

SiiC

C(gr)
SiC(p)

3.84-03

3.97-06

2.25-06

5.84-07

3.64-08

1.01-09

7.63-10

9.91-01

6.65-06

4.95-09

1.96-09

3.59-11

3.09-11

7.56-12

6.93-15

6.39-15

2.14-03

3.00-03

CH i

CIH2

CIHi

CH s

CIH6

CsHi
Allene

Hi
H

SiH,

SIIC

SiH i

Si s

SiH

SiI-Is
Si

Not allowed

Not allowed

8.47-03

1.96-05

1.10-05

1.29-06

1.7%07

8.30-09

5.31-09

9.89-01

6.5%06

9.63-04

5.50-04

3.83-04

1.87-04

7.06-06

6.02-06

1.49-06

CH i

CiHi

CHs

CiH4

CiHa

CzH

CsH,

Hi
H

SiH z
SiH

SiH,
Si

Sill s

SiC i

Si2C

C(g,)

sic(_)

SNo condensed phases are _Llowed in these cslculstions.

9.83-04

1.01-04

4.15-06

3.69-06

3.60-08

1.80-08

9.23-09

9.74-01

1.77-04

1.86-07

2.28-08

2.01-08

1.51-08

1.66-09

1.44-10

1.09-10

2.22-02

2.93-03

CH,

CIHi

C=HI

CH s

CaH,

CiHl

Allene

Hi
H

SiiC

Sill 2

SLH

SiHs
Si

SiC l

Si s

Not allowed

Not allowed

8.71-03

8.20-03

2.93-04

3.71-05

6.57-06

5.94-06

4.70-06

9.81-01

1.80-04

1.35-03

2.18-04

2.69-05

2.31-05

1.80-05

1.37-05

8.25-06
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